登陆注册
4794300000006

第6章 数学之谜(6)

所谓回数,就是一个数从左向右读和从右向左读都是一样,这样的数称之回数,如303,12821,88888……等都是回文式数,这种数在数中有无限多个。

对回数进行研究,得出一个回数猜想。此猜想到现在也没有解决。猜想是这样表白的:不论开始采用什么数,在经过有限的步骤后,一定可以得到一个回文式数。这个有限的步骤是这样的:任取一个数,再把这个数倒过来,并将这两个数相加。然后再把这个数倒过来,与原来的数相加。只要重复这个过程,就可以获得回文式数。

大家一看就知道,19394经过四步,就成了回文式数。数学家屡试屡对,无一例外。区别只有步骤多少。

直到今天,还没有人证明这个猜想是对还是错。有一个196,此数看看很简单,数学家用电子计算机对它进行了几十万步的计算,没有能获得回文式数,但计算机并没有证明它永远产生不了回文式数。

什么是“数学黑洞”?当写出一个任意的四位数(除四个数字完全一样的除外,例4444 7777等),再重新对其进行整理,从大到小的顺序重新排列,把最大的数当作千位数,接下来把次大的数当作百位数……依次类推。举例来说,如5477经过整理之后便是7754。接下来,把得到的这个数颠倒一下,然再求出这两个数的差(用大数减去小数,只看绝对值,不管正负号),然后,再对所得到的差数,把上述两个步骤再做一遍,于是又得到一个新的差数。

重复以上步骤,做不了几次,就会发现出现神秘的数6174。任何不完全相同的四位数,经过重排和求差运算之后,都会得出6174。它好像数的黑洞,掉进去就出不来。

为什么会出现这样有趣的黑洞数?这个难题困扰着数学界,尚需要数学家去探究其中的奥秘。

神奇的“角谷猜想”

三十多年前,日本数学家角谷静发现了一个奇怪的现象:一个自然数,如果它是偶数,那么用2除它;如果商是奇数,将它乘以3之后再加上1,这样反复运算,最终必然得1。

比如,取自然数N=6,按角谷静的作法有:6÷2:3,3×3+1=10÷10÷2=5,5×3+1=16,16÷2=8,8÷2=4,4÷=2,2÷2=1,从6开始经历了3→10→5→16→8→4→2→1最后得1。

找个大数试试,取N=16384。

1384÷2=8192,8192÷2=4096,4096÷2=2048,2048÷2=1024,1024÷2=512,512÷2=256,256÷2=128,128÷2=64,64÷2=32,32÷2=16,16÷2=8,8÷2=4,4÷2=2,2÷2=1,这个数连续用2除了14次,最后还是得1。

这个有趣的现象引起了许多数学爱好者的兴趣,一位美国数学家说:“有一个时期,在美国的大学里,它几乎成了最热门的话题,数学系和计算机系的大学生,差不多人人都在研究它。”人们在大量演算中发现,算出来的数字忽大忽小,有的过程很长,比如27算到1要经过112步,有人把演算过程形容为云中的小水滴,在高空气流的作用下,忽高忽低,遇冷成冰,体积越来越大,最后变成冰雹落了下来,而演算的数字最后也像冰雹一样掉下来,变成了1!数学家把角谷静这一发现,称为“角谷猜想”或“冰雹猜想”。

把它叫猜想,是因为到目前为止,还没有人能证明出按角谷静的作法,最终必然得1。

这一串串数难道一点规律也没有吗?观察前面作过的两串数:

6→3→10→16→8→4→2→1

16384→8192→4096→2048→1024→512→256→128→64→32→16→8→4→2→1。

最后的三个数都是4→2→1。

为了验证这个事实,从1开始算一下:

3×1+1=4,4÷2=2,2÷2=1。

结果是1→4→2→1,转了一个小循环又回到了1,这个事实具有普遍性,不论从什么样自然数开始,经过了漫长的历程,几十步,几百步,最终必然掉进4→2→1这个循环中去,日本东京大学的米田信夫对从1到10995亿1162万7776之间的所有自然数逐一做了检验,发现它们无一例外,最后都落入了4→2→1循环之中!

计算再多的数,也代替不了数学证明。“角谷猜想”目前仍是一个没有解决的悬案。

其实,能够产生这种循环的并不止“角谷猜想”,下面再介绍一个:

随便找一个四位数,将它的每一位数字都平方,然后相加得到一个答数;将答数的每一位数字再都平方,相加……一直这样算下去,就会产生循环现象。

现在以1998为例:

1(上标2)+9(上标2)+9(上标2)+8(上标2)=1+81+81+64=227

2(上标2)+2(上标2)+7(上标2)=4+4+49=57

5(上标2)+7(上标2)+25+49=74

7(上标2)+4(上标2)=49+16=65

6(上标2)+5(上标2)=36+25=61

6(上标2)+5(上标2)=36+11=137

3(上标2)+7(上标2)=9+49=58

5(上标2)+8(上标2)=25+64=89

下面再经过八步,就又出现89,从而产生了循环:

捉摸不定的质数

一个大于1的整数,如果除了它本身和1以外,不能被其他正整数所整除,这个整数就叫做质数。质数也叫素数,如2、3、5、7、11等都是质数。

如何从正整数中把质数挑出来呢?自然数中有多少质数?人们还不清楚,因为它的规律很难寻找。它像一个顽皮的孩子一样,东躲西藏,和数学家捉迷藏。

古希腊数学家、亚历山大图书馆馆长埃拉托塞尼提出了一种寻找质数的方法:先写出从1到任意一个你所希望达到的数为止的全部自然数。然后把从4开始的所有偶数画掉;再把能被3整除的数(3除外)画掉;接着把能被5整除的数(5除外)画掉……这样一直画下去,最后剩下的数,除1以外全部都是质数。如找1~30之间的质数:

后人把这种寻找质数的方法叫埃拉托塞尼筛法。它可以像从沙子里筛石头那样,把质数筛选出来,质数表就是根据这个筛选原则编制出来的。

数学家并不满足用筛法去寻找质数,因为用筛法求质数带有一定的盲目性,你不能预先知道要“筛”出什么质数来。数学家渴望找到的是质数的规律,以便更好地掌握质数。

从质数表中可以看到质数分布的大致情况:

1到1000之间有168个质数;

1000到2000之间有135个质数;

2000到3000之间有127个质数;

3000到4000之间有120个质数;

4000到5000之间有119个质数。随着自然数的变大,质数的分布越来越稀疏。

质数把自己打扮一番,混在自然数里,使人很难以从外表看出它有什么特征。比如101、401、601、701都是质数,但是301和901却不是质数。又比如,11是质数,但111、11111以及由11个1、13个1、17个1排列成的数都不是质数,而由19个1、23个1、317个1排列成的数却都是质数。

有人做过这样的验算:

1(上标2)+1+41=43,

2(上标2)+2+41=47,

3(上标2)+3+41=53,

39(上标2)+39+41=1601。

从43到1601连续39个这样得到的数都是质数,但是再往下算就不再是质数了。

40(上标2)+40+41=1681=41×41,1681是一个合数。

被称为“17世纪最伟大的法国数学家”费马,对质数做过长期的研究。他曾提出过一个猜想:当n是非负整数时,形如f(n)=2(上标2n)+1的数一定是质数。后来,人们把2(上标2n)+1形式的数叫做“费马数”。

费马提出这个猜想当然不是无根据的。他验算了前5个费马数:

f(0)=2(上标2n)+1=2+1=3

f(1)=2(上标2n)+1=4+1=5

f(2)=2(上标2n)+1=16+1=17

f(3)=2(上标2n)+1=256+1=257

f(4)=2(上标2n)+1=65536+1=65537

验算的结果个个都是质数。塞马没有再往下验算。为什么没往下算呢?有人猜测再往下算,数字太大了,不好算。但是,就是在第6个费马数上出了问题!费马死后67年,也就是1732年,25岁的瑞士数学家欧拉证明了第6个费马数不再是质数,而是合数。

f(5)=2(上标25)+1=2(上标32)+14292967297=641×6700417

更有趣的是,从第6个费马数开始,数学家再也没有找到哪个费马数是质数,全都是合数。现在人们找到的最大的费马数是f(1495)=2(上标21945)+1,其位数多达10(上标10584)位,这可是个超级天文数字。当然尽管它非常之大,但也不是质数。哈哈,质数和费马开了个大玩笑!

在寻找质数方面做出重大贡献的,还有17世纪法国数学家。天主教的神父梅森。梅森于1644年发表了《物理数学随感》,其中提出了著名的“梅森数”。梅森数的形式为2(上标p)-1,梅森整理出11个P值使得2(上标p)-1至成为质数。这11个P值是2、3、5、7、13、17、19、31、67、127和257。你仔细观察这11个数不难发现,它们都是质数。不久,人们证明了:如果梅森数是质数,那么p一定是质数。但是要注意,这个结论的逆命题并不正确,即P是质数,2(上标p)-1不一定是质数,比如2(上标11)-1=2047=23×89,它是一个合数。

梅森虽然提出了11个p值可以使梅森数成为质数,但是,他对11个P值并没有全部进行验算,其中的一个主要原因是数字太大,难以分解。当p=2、3、5、7、17、19时,相应的梅森数为3、7、31、127、8191、13107、524287。由于这些数比较小,人们已经验算出它们都是质数。

1772年,历岁双目失明的数学家欧拉,用高超的心算本领证明了P=31的梅森数是质数:

还剩下P=67、127、257三个相应的梅森数,它们究竟是不是质数,长时期无人去论证。梅森去世250年后,19仍年在纽约举行的数学学术会议上,数学家科勒教授做了一次十分精彩的学术报告。他登上讲台却一言不发,拿起粉笔在黑板上迅速写出:

2(上标67)-1=147573952589676412927

=193707721×761838257287

然后就走回自己的座位。开始时会场里鸦雀无声,没过多久全场响起了经久不息的掌声。参加会议的人纷纷向科勒教授祝贺,祝贺他证明了第9个梅森数不是质数,而是合数!

1914年,第10个梅森数被证明是质数;

1952年,借助电子计算机的帮助证明了第11个梅森数不是质数。

以后,数学家利用速度不断提高的电子计算机来寻找更大的梅森质教。1996年9月4日,美国威斯康星州克雷研究所的科学家,利用大型电子计算机找到了第33个梅森质数,这电是人类迄今为止所认识的最大的质数,它有378632位:2(上标1257787)-1,同时发现了新的完全数:2(上标1257787-1×2(上标1257786)。

数学家尽管可以找到很大的质数,但是质数分布的确切规律仍然是一个谜。古老的质数,它还在和数学家捉迷藏呢!

古埃及遗题

《兰特纸草书》是古埃及人在4000年前的一本数学书,上面用象形文字记载了许多有趣的数学题,比如:

在7,7×7,7×7×7,7×7×7×7,7×7×7×7×7,……这些数字上面有几个象形符号:房子、猫、老鼠、大麦、斗,翻译出来就是:

“有7座房子,每座房子里有7只猫,每只猫吃了7只老鼠,每只老鼠吃了7穗大麦,每穗大麦种子可以长出7斗大麦,清算出房子、猫、老鼠、大麦和斗的总数。”

奇怪的是古代俄罗斯民间也流传着类似的算术题:

“路上走着七个老头,

每个老头拿着七根手杖,

每根手杖上有七个树权,

每个树权上挂着七个竹篮,

每个竹篮里有七个竹笼,

每个竹笼里有七个麻雀,

总共有多少麻雀?”

古俄罗斯的题目比较简单,老头数是7,手杖数是7×7=49,树权数是7×7×7=49×7=343,竹篮数是7×7×7×7=343×7=2401,竹笼数是7×7×7×7×7=2401×7=16807,麻雀数是7×7×7×7×7×7=16807×7=117649。总共有十一万七千六百四十九只麻雀。七个老头能提着十一万多只麻雀溜弯儿,可真不简单啊!若每只麻雀按20克算,这些麻雀有2吨多重。

《兰特纸草书》上在猫吃老鼠、老鼠吃大麦的问题后面有解答,说是用2801乘以7。

求房子、猫、老鼠、大麦和斗的总数,就是求和7+7×7+7×7×7+7×7×7×7+7×7×7×7×7=7+49+343+2401+16807=19607。这同上面2801×7=19607的答数一样,古代埃及人在四千多年前就掌握了这种特殊的求和方法。

类似的问题在一首古老的英国童谣中也出现过:

“我赴圣地爱弗西,

途遇妇子数有七,

一人七袋手中提,

一猫七子紧相依,

妇与布袋猫与子,

几何同时赴圣地?”

意大利数学家斐波那契在1202年出版的《算盘书》中也有类似问题:

“有7个老妇人在去罗马的路上,每个人有7匹骡子;每匹骡子驮7只口袋;每只口袋装7个大面包;每个面包带7把小刀;每把小刀有七层鞘,在去罗马的路上,妇人、骡子、面包、小刀和刀鞘,一共有多少?”

同一类问题,在不同的时代、不同的国家以不同的形式出现,但是,时间最早的还要数古埃及《兰特纸草书》。

遗嘱中的数学难题

在按遗嘱分配遗产的问题中,有许多有趣的数学题。

俄国著名数学家斯特兰诺留勃夫斯基曾提出到这样一道分配遗产问题:

“父亲在遗属里要求把遗产的1/3分给儿子,2/5分给女儿;剩余的钱中,2500卢布偿还债务,3000卢布留给母亲,遗产共有多少?子女各分多少?”

设总遗产为x卢布。

则有1/3x+2/5x+2500+3000=x,

解得:x=20625。

儿子分20625×1/3=6875(卢布),

女儿分20625×2/5=8250(卢布)。

结果是女儿得是最多,得8250卢布,儿子次之,得6875卢布,母亲分得最少,得3000卢布,看来父亲最喜爱自己的女儿。

下面的故事最初在阿拉伯民间流传,后来传到了世界各国,故事说:一位老人养了17只羊,老人去世后在遗嘱中要求将17只羊按比例分给三个儿子,大儿子分1/2,二儿子分1/3,三儿子分1/9,在分羊时不允许宰杀羊。

看完父亲的遗嘱,三儿子犯了愁,17是个质数,它既不能被2整除,也不能被3和9整除,又不许杀羊来分,这可怎么办?

聪明的邻居得到这个消息后,牵着一只羊跑来帮忙,邻居说:“我借给你们一只羊,这样18只羊就好分了。”

老大分 18×1/2=9(只),

老二分 18×1/3=(只),

老三分 18×1/9=2(只)。

合一起是9+6+2=17,正好这只羊,还剩下一只羊,邻居把它牵回去了。

羊被邻居分完了,再深入想一想这个问题,我们会发现遗嘱中不合理的地方,如果把老人留的羊作为整体1的话,由于1/2+1/3+1/9=17/18

同类推荐
  • 兽王·沙海远征

    兽王·沙海远征

    兰虎三人在剑塔中各自获得不同的守护碑传承,兰虎甚至还收伏了一只树精。选拔的时间逐渐逼近,兰虎三人也抓紧了时间在守护者联盟中学习一切知识,为即将到来的选拔做准备。时间的脚步无法阻挡,选拔的日期终于到了。守护者联盟的战舰载着来自各星球的强者们,将他们投入到不同星系的不同星球,这些星球有着不同的地理面貌和生存环境,它们的共同点是这里都曾遭到过侵略,有的战火仍在继续,有的则战火已经熄灭,但是却有一些邪恶的强者潜伏了下来,这就是选拔者的任务,他们要完成任务,并炼制出守护碑,才能正式成为守护者联盟的一员。
  • 奋发图强(中华美德)

    奋发图强(中华美德)

    “奋发图强”是一个生活中常用的成语,意思是振作精神,以求强盛。郭沫若《科学的春天》:“我祝愿中年一代的科学工作者奋发图强,革命加拼命,勇攀世界科学高峰。”“中华美德”从传统文化的角度,对美德和人格修养的各个方面做出了形象生动的阐释。“奋发图强”为其中的一种。本书很好的选用了大量的好诗词句,故事短小精悍、内容积极健康、文字通俗凝练,注重趣味性和可读性。希望能给你带来你想要的成功。
  • 学生版心灵鸡汤:心动后还要行动

    学生版心灵鸡汤:心动后还要行动

    万事始于心动而成于行动。心动是成功的源泉,行动是成功的阶梯。心中所确立的目标越现实、越高远,行动越迅捷、越高效,最终所取得的成就也就越大!这套丛书选编了古今中外故事中的精品,文字清新隽永,读后令人终生难忘。每篇故事篇幅短小,寓意深刻。在茶余饭后,品读之后能让人的心灵为之震颤,醍醐灌顶;能陶冶人的情操,历练人的性情,厚实人的底蕴,纯粹人的精神,完美人的灵魂。文中一篇篇闪着智慧火花的文章,为人的心灵打开了一扇扇窗,开启了一扇扇门,指明了一条条路,让人的生活豁然开朗,意境提升。
  • 影响孩子一生的42个探险故事

    影响孩子一生的42个探险故事

    本书向大家展示了一系列惊心动魄的探险故事,同时也向读者打开了一扇扇新的探索大门。
  • 把车停在22世纪(科幻故事白金版)

    把车停在22世纪(科幻故事白金版)

    一个充满魅力和幻想的奇妙世界就牢牢地吸引了全世界孩子的目光,这就是科幻的世界。本书本书精心编选了近20年来在全国大型报刊、杂志发表的最适合小学生阅读的短篇科幻。文章爱憎情感饱满而强烈,幻想世界丰富而优美,故事情节离奇而曲折。
热门推荐
  • 无碑

    无碑

    历史记住的是大人物,《无碑》以文字为小人物树起一块碑,一块关于正义、善良、爱,关于坚守、青春与梦想,关于苦难与苦难中人性伟大之碑,一块肯定和弘扬正面精神价值之碑。
  • 鬼童禁忌

    鬼童禁忌

    两年前公司野游,因为没有购买纪念品惹下祸事。一连串的死亡记录,终于轮到了我。困局初显,却被公交车上捡的小男孩解开。可他又是谁……
  • 世界的真相

    世界的真相

    从默默无闻到开宗立派他是如何一步步走上逆袭之路?从快递小哥到风水大师他是如何一步步立于玄学之巅?一个家族的故事,波浪壮阔。一个传奇的人物,前世今生。一个个灵异事件,扑朔迷离。接近世界本源,一语道破天机!世界,将由此真相大白!!!
  • 无趣的舞曲

    无趣的舞曲

    一朝穿越,身为法医实习生的长乐自然不会甘心成为废物任人宰割,只是重生后的生活是不是太滋润了点?“嗨!皇子,喝茶吗?”“哟,这位小公子,看你气色不太好要不要我帮你看看啊?”
  • 女人受益一生的36堂心计课

    女人受益一生的36堂心计课

    好男人少?其实只是你不懂得 操纵人心的诀窍;忧郁烦恼?因为你还没有掌握调整心理的技巧。 现实中的爱情和电视剧一样,就像打仗,需要有战术,有技巧。像对待 敌人一样对待你的情人吧,三十六计全部使出来,你可以品性纯良,但绝不 可以任人欺负。在甜言蜜语时,要如春天般的温暖,在床上时,要如夏天般 的火热,在遇到情敌时,要如秋风扫落叶一样残酷,在必须快刀斩麻时,要 如冬天般的残酷。 爱情里,他是你的情人,又是你的敌人,需要不停地抗衡、博弈。把爱 人当成你的敌人一样来认真对待,情场如战场,看你有几斤几两。
  • 网游之富甲四方

    网游之富甲四方

    小人物奋斗史,从游戏中一步步走向成功大道,铸造一段财富之路……
  • 网游之全职窃神

    网游之全职窃神

    偷钱财,偷装备,这些只不过是小菜一碟而已。偷技能,偷属性,这就比较牛叉了。无职业者也没什么可怕的,只要剽窃职业特性就可以了,想成为什么职业就成为什么职业,随心所欲,这个不但逆天,还很爽。不过这些都不算什么,“偷”的最高境界是偷人,偷心,偷感情,达到这个境界才是最逆天的,这需要更加的努力,是个脑力活。凭借着一只可以晋阶的『崇高指环』,涂飞这个前途无光的无职业者在一个全场景模拟技术所架构的游戏世界中成就了一个传说。“其实我不是什么高手,只是一个扒手而已。”涂飞如是说道。
  • 妖孽王爷霸上逆天萌妃

    妖孽王爷霸上逆天萌妃

    她,21世纪暗黑杀手,呆萌穿越,一日为狐,终生为狐,新技能通通get,实力强到逆天,容貌惊艳到无法形容,却被某男缠得死死的。“Ohmygod!我的美男啊!”“哦?小东西有本王就够了。”他,帝都妖孽四王爷,大陆美女如云可他却偏偏独宠雪狐一人,抱在怀里怕摔了,含在嘴里怕化了……不过,你以为咱们家狐狸那么好的哄吗?“慕!容!紫!芸!你给本王站住!”“有本事就来追我啊!哼╭(╯^╰)╮!”“欸欸欸,痛痛痛,王爷,咱们要不要换一种打开方式?”只见某男邪魅一笑,反身把慕容紫芸压在身下:“哦?小东西要怎么个打开法?嗯?”“嗯,那个,你能不能先下来啊。”“不能……”“……”
  • 一品俊王妃

    一品俊王妃

    宋锦书的神棍哥哥把宋锦书当做试验品,然后穿越了!穿就穿吧!可是天不公啊!嫁人了?嫁给王爷了?王爷还是个傻子?尼玛~“宋锦尧!你个王八蛋!我要回去!”某只仰天大吼。他,痴傻王爷,俊俏脸庞,无害眼睛,任性好玩,唯爱她!她,爱玩爱闹,精灵古怪,单纯善良,节操木有,她爱他!他们的日子明里过得快乐安详,实则暗潮汹涌,为了皇位,你争我抢,傻王爷为保宋锦书不再装傻,而傻王爷酝酿的计划也只能及早实施。【简介无能,不喜绕道】
  • 玄兵再临

    玄兵再临

    一位出身名门的年轻特种兵因为执行任务而重返校园,认识了一群同样来历不凡的同学,从此,冒险成为了他们生活中的主题。吸血鬼出没的欧洲古堡、遗忘千年的楼兰地下城、镇压十方恶灵的古老村落、埋葬无数宝藏的所罗门陵墓……面对一次又一次的挑战,在亲情与友情的交织中,在玄术与科技的交融中,在文明与黑暗的斗争中,这些年轻的勇士们,从未放弃前进的步伐!