登陆注册
19461600000030

第30章

First let the luminous body be appearing on the horizon at the point H, and let KM be reflected to H, and let the plane in which A is, determined by the triangle HKM, be produced. Then the section of the sphere will be a great circle. Let it be A (for it makes no difference which of the planes passing through the line HK and determined by the triangle KMH is produced). Now the lines drawn from H and K to a point on the semicircle A are in a certain ratio to one another, and no lines drawn from the same points to another point on that semicircle can have the same ratio. For since both the points H and K and the line KH are given, the line MH will be given too;consequently the ratio of the line MH to the line MK will be given too. So M will touch a given circumference. Let this be NM. Then the intersection of the circumferences is given, and the same ratio cannot hold between lines in the same plane drawn from the same points to any other circumference but MN.

Draw a line DB outside of the figure and divide it so that D:B=MH:MK. But MH is greater than MK since the reflection of the cone is over the greater angle (for it subtends the greater angle of the triangle KMH). Therefore D is greater than B. Then add to B a line Z such that B+Z:D=D:B. Then make another line having the same ratio to B as KH has to Z, and join MI.

Then I is the pole of the circle on which the lines from K fall. For the ratio of D to IM is the same as that of Z to KH and of B to KI. If not, let D be in the same ratio to a line indifferently lesser or greater than IM, and let this line be IP. Then HK and KI and IP will have the same ratios to one another as Z, B, and D. But the ratios between Z, B, and D were such that Z+B:D=D: B. Therefore IH:IP=IP:IK. Now, if the points K, H be joined with the point P by the lines HP, KP, these lines will be to one another as IH is to IP, for the sides of the triangles HIP, KPI about the angle I are homologous. Therefore, HP too will be to KP as HI is to IP. But this is also the ratio of MH to MK, for the ratio both of HI to IP and of MH to MK is the same as that of D to B. Therefore, from the points H, K there will have been drawn lines with the same ratio to one another, not only to the circumference MN but to another point as well, which is impossible. Since then D cannot bear that ratio to any line either lesser or greater than IM (the proof being in either case the same), it follows that it must stand in that ratio to MIitself. Therefore as MI is to IK so IH will be to MI and finally MH to MK.

If, then, a circle be described with I as pole at the distance MI it will touch all the angles which the lines from H and K make by their reflection. If not, it can be shown, as before, that lines drawn to different points in the semicircle will have the same ratio to one another, which was impossible. If, then, the semicircle A be revolved about the diameter HKI, the lines reflected from the points H, K at the point M will have the same ratio, and will make the angle KMH equal, in every plane. Further, the angle which HM and MImake with HI will always be the same. So there are a number of triangles on HI and KI equal to the triangles HMI and KMI. Their perpendiculars will fall on HI at the same point and will be equal.

Let O be the point on which they fall. Then O is the centre of the circle, half of which, MN, is cut off by the horizon. (See diagram.)Next let the horizon be ABG but let H have risen above the horizon. Let the axis now be HI. The proof will be the same for the rest as before, but the pole I of the circle will be below the horizon AG since the point H has risen above the horizon. But the pole, and the centre of the circle, and the centre of that circle (namely HI)which now determines the position of the sun are on the same line. But since KH lies above the diameter AG, the centre will be at O on the line KI below the plane of the circle AG determined the position of the sun before. So the segment YX which is above the horizon will be less than a semicircle. For YXM was a semicircle and it has now been cut off by the horizon AG. So part of it, YM, will be invisible when the sun has risen above the horizon, and the segment visible will be smallest when the sun is on the meridian; for the higher H is the lower the pole and the centre of the circle will be.

同类推荐
  • 唐铙歌鼓吹曲十二篇

    唐铙歌鼓吹曲十二篇

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 明伦汇编人事典投胎部

    明伦汇编人事典投胎部

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 随缘集

    随缘集

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 影梅庵忆语

    影梅庵忆语

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 雷峰塔奇传

    雷峰塔奇传

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
热门推荐
  • 巴尔扎克(世界十大文豪)

    巴尔扎克(世界十大文豪)

    巴尔扎克是19世纪中期法国杰出的批判现实主义作家。他穷毕生精力,创作了卷帙浩繁、气势恢宏的小说集《人间喜剧》,其中包括《舒昂党人》、《夏倍上校》、《乡村医生》、《欧也妮·葛朗台》、《高老头》、《幽谷百合》、《禁治产》、《无神论者做弥撒》、《赛查·皮罗多盛衰记》、《卡迪央王妃的秘密》、《搅水女人》、《纽沁根银行》、《古物陈列室》、《幻灭》、《贝姨》、《邦斯舅舅》、《农民》等96部。
  • 穿时空之再续缘

    穿时空之再续缘

    穿越?还是魂穿?穿就穿了吧,可是能不能别这么残忍,身体的主人竟然从生下来就背负着一条人命!要用她的一生去还,她才不干!原想去找他算帐,当看到他时,才发现他竟是前世有一面之缘的他?!正好,新仇加旧恨一次性解决了!她打乱了彼此的生活,从此他们的生活变多姿多彩。情节虚构,请勿模仿!
  • 千年轮回生死恋

    千年轮回生死恋

    为了来生再见今生最爱,可以不喝孟婆汤,那便须跳入忘川河,等上千年才能投胎。千年之中,你或会看到桥上走过今生最爱的人,但是言语不能相通,你看得见他,他看不见你。千年之中,你看见他走过一遍又一遍奈何桥,喝过一碗又一碗孟婆汤,又盼他不喝,又怕他受不得忘川河中千年煎熬之苦,受不得等待的寂寞。喝孟婆汤,了前尘旧梦,断前因后果。忘尽一世浮沉得失,一生爱恨情仇,来生都同陌路人相见不识;跳忘川河,污浊的波涛之中,为铜蛇铁狗咬噬,受尽折磨不得解脱。千年之后若心念不灭,还能记得前生事,便可重入人间,去寻前生最爱的人。
  • 旧爱缠婚

    旧爱缠婚

    被前夫纠缠怎么办?在线等,急!答案一:报警。答案二:纠缠回去!答案三:找现男友出马。那如果前夫颜高钱多,英俊霸气呢?答案一:躺好!答案二:躺好!答案三:躺好!--情节虚构,请勿模仿
  • 巨剑回龙

    巨剑回龙

    “回龙秘辛”重现江湖,得此书者,可习得无上武功,称霸武林。对武功一窍不通的陆剑平偶然间习得回龙掌三式招式,并得丹药之助,内力大大提升。陆剑平接任风雷门新掌门,为了夺回“回龙秘辛”及为父报仇,陆剑平与火灵门展开一场厮杀。在武林恩怨中,陆剑平渐露头角,俨然有武林盟主的地位。
  • 欲海风云

    欲海风云

    阴森的古庙,黑暗中一闪而过的白影……是谁在背后虎视眈眈,随时要伸出狰狞的利爪?一张藏宝图,无尽的贪念,引得他们一步步走向万劫不复。到底是古庙有鬼,还是疑心生暗鬼?但一切即将长相大白的时候,事情却又出现了转机?
  • 女皇契约

    女皇契约

    霍桑自杀后来到女尊国,成为年幼的无权女皇,娶了善文、善乐、善画、善食的四位奇男子,梦中虚境里仙一般的于析君要她与同样异界而来的人阻止这里不久后的一场灭世之战,她却遭那人的嫉妒而被算计。于析君出世助她,用无所不能的脑袋帮助着也约束着她,皇宫因此失去了平和,皇城外的硝烟也一触即发。时过境迁,那温润尔雅的人,热情献媚的人,作为潇洒的人,懒惰非常的人,他们有的却是敌国细作,有的是最想逃离皇宫的人,有的计划了一场场悲剧,有的甘愿做金国唯一也是第一个男宰相。女主有过艳福,有过伤痛,经历过宫斗也游历过民间江湖,最后的最后,女皇制定了新的君主制,与皇后巡游列国,传唱着永世佳话,但谁能有幸成为她那皇后呢?
  • 霸天武道

    霸天武道

    前世他以一敌万,陨灭无数大神,最后血祭吞天,穿越东龙大陆!这一世他凤凰涅槃顿悟霸天武道!世间万事,非黑即白!与我为敌,十死无生!
  • 舞动青春:邪魅叛逆少女

    舞动青春:邪魅叛逆少女

    多么讽刺!聂希晨和聂希维,一对同父异母的兄妹。一字之差的名字,却有着截然不同的人生及待遇。一个受万千宠爱的美男子,尊贵而荣耀;一个是见不得光的私生女,肮脏而低等。她是聂家豪门私生女,拥有倔强叛逆的性格,十六年来把聂家闹得天翻地覆;十六年后遇上黑道老大的他,她将会为他及他的组织带来祸害还是福音?在这场斗争中谁改写谁的命运??
  • 心理助你成功

    心理助你成功

    布鲁斯·巴顿曾说:“只有那些敢于相信自己内心有某种东西能够战胜周围环境的人,才能创造辉煌。”成功的力量源于我们的心灵,在我们追求成功的过程中,心理将起到神奇的作用,它会使你的情绪稳定,意志坚定,心态平衡,信念坚强,潜能得到开发,效能得到提高。在这些神奇心理力量的作用下,你将获得巨大的成功动力,进而变得强大起来,这时你将无所不能!