登陆注册
14330100000027

第27章 医学新视野(4)

用超声波扫描的胎儿图像采用三维技术后,我们能够非常迅速地观察整个跳动的心脏,并且可观看我们选择的任何部位。我们能观看心脏的前面、侧面和横侧面,一切都是在心脏跳动时进行的。”

为了“实时”捕捉跳的心脏以及胎儿活动图像,避免延迟,每个信号必须用大规模并行计算机处理技术同时处理。当有关内部组织的图像出现在观察屏上后,医生用一个接触垫能够同时调出多达16个切片的画面。

切片的视角可以不同,而且可把它们做得薄些和厚些。为了能随时观看它们,医生能够把所有的图像存储下来以便以后分析。

试管婴儿

试管婴儿正式名称为玻璃管受孕儿,英文简称为IVF。它使得体外受精卵移植治疗不孕症成为现实,同时也解决了输卵管不通不能妊娠的问题。试管婴儿揭示了很多生理现象,为研究人类生殖学开拓了新的途径,同样,也给人类的生殖伦理提出了新的问题。

早在20世纪60年代初,澳大利亚及英国的医学家就分别发表出关于体外受精卵移植的文章。举世闻名的第一例试管婴儿,于1978年7月25日诞生在英国奥德海姆总医院。这一试管婴儿健康地发育成长的事实,为许多患有输卵管疾病而不能生育的妇女带来了希望创举的荣誉归英国医学家爱德华,当时,剖腹产出的女婴重达2700克,自此之后,澳大利亚、美国、德国等都相继有试管婴儿出生的报道。我国首例试管婴儿于1988年3月在北京医科大学附属第三医院诞生。这项技术深受人们的关注,尤其深受因输卵管不通而不孕的妇女的欢迎。

试管婴儿主要是解决卵子与精子不能相遇,不能结合受精的问题。其培育包括体外受精和早期胚胎移植两个步骤,娩出后叫试管婴儿。具体的方法包括以下几个步骤。

激发排卵,可以使用促排卵药物,让患者在一周内有多个卵子排出。

收集卵子。根据医学条件及技术水平可采用剖腹取卵、腹腔镜下取卵以及在B超引导下经阴道取卵3种方法。

将卵子培养约4小时,等待体外受精。

体外受精,采集好丈夫的精液,待液化后,摒弃精浆,进行体外受精培养,大约需72~76个小时。

进行胚胎移植。在做好各项准备工作后,将受精卵从培养基中取出,移植至宫腔内。

试管婴儿适于那些女性卵巢功能正常、子宫正常,但输卵管梗阻、输卵管积水,经反复治疗无效的人,以及排卵有障碍者;男性要求精液正常、无病菌感染,但精子减少等症。年龄一般要求双方都在40岁以下。

目前“试管婴儿”的体外受精成功率可达60%~70%,但胚胎移植成功率仅为10%~20%。从已经分娩的试管婴儿情况看,目前尚未发现特殊的先天异常,这项技术正在被进一步开发研究。

器官移植

1954年,美国波士顿的一家医院里,一位24岁患了晚期肾炎的病人接受了一个新手术。医生从病人的孪生兄弟身上取下一侧活肾,将它移植到病人的体内,手术获得成功,病人得以痊愈。肾脏移植术,是器官移植的一种,而且是较为简单的一种。

器官移植,就是将另外一个人身上的健康器官取出来,移植到病人的身体上的手术,就如同植物学的“移花接木”一样。器官移植可抢救某些危及生命的组织器官,是极其重要的治疗途径,往往可以达到起死回生的目的。

人体器官移植是比组织移植复杂得多的一种手术。人体组织的移植较为简单,如眼球的角膜移植,皮肤移植(植皮)和血管移植,目前来讲难度并不太大。而器官移植则要复杂和困难得多。以肝脏移植为例,从健康人的身体中取出的肝脏,在移植到病人身体内的过程中,移植肝的细胞会大量坏死,移植后的肝脏制造白蛋白和纤维蛋白的能力显著下降,病人每天要输入大量的白蛋白和纤维蛋白,其存活时间也很有限。

医学专家告诉我们,器官移植并不像坏了的机器更换零件那样简单,即使是自行车更换零件,也要考虑零件的规格是否合适。在器官移植中,这一问题同样地重要。这就是器官移植中的大敌:“排异反应”。

目前,器官移植还无法解决排异反应这个难题。最好的办法是采用“相同型号”的器官。上面提到过的肾脏移植手术,肾脏是从其孪生兄弟身上取下的,器官之间具有极大的亲和力,可以有效地排除排异反应。因此,手术的技术只是一方面,被移植的器官是否发生排异反应才是影响器官移植手术成功的最大因素。1999年不幸病逝的约旦国王侯赛因就是因为在骨髓移植中发生了排异反应。

值得庆幸的是,医学正在不断地取得突破。近年来,在基础医学研究和高分子合成材料发展的基础上,人工脏器取得了重大突破。医学家利用现代生物技术和特殊材料制造人工脏器,可以有效地减少发生排异反应。

1997年,英国克隆“多莉”绵羊的成功为这一领域带来了前所未有的曙光。人们乐观地预测,克隆技术将为器官移植开辟光明大道,将排异反应的可能性降低到零。

可以设想,如果心脏病患者急需得到一个好的心脏,但他人的心脏移植极有可能发生排异反应。那么可以让医生从病人的心脏中取出一个细胞,利用克隆技术在短时间内“培育”出一个与病人原来的心脏一模一样的心脏。人们完全不必为可能发生的排异反应而担忧,克隆器官比人体原来的器官要好得多。

目前,可移植器官的种类不断增多,除了人的大脑以外,几乎所有的重要器官都有人工移植的记录,从早期的肾脏移植发展到现在的心脏移植、肝脏移植、骨髓移植、胰腺移植和肺移植。在科学日益昌明的今天,我们完全有理由相信人的一切器官都可以移植。也许到了那时,人真的可以“长生不死”了。

心脏移植

我们人类有一双手、一双眼睛、两只脚,心脏却只有一个。但1978年10月,有一件事轰动了世界医学界:法国阿尔努—詹克研究所的心脏病专家们,给患有严重心脏病而住在医院里慢慢等候死亡的48岁商人皮埃尔·昂萨多成功地植入了一颗死于交通事故的15岁少年的心脏,于是皮埃尔·昂萨多成为用两颗心脏活着的人。新植入的心脏同有病的心脏是并联的,有病的心脏只是负担正常工作量的15%,而新植入的那颗心脏则成为保证病人生存的主力。手术后几个月,皮埃尔·昂萨多就康复出院,恢复了正常人的生活。

虽然皮埃尔·昂萨多是具有两颗心脏的人,但他并不是世界上第一个接受心脏移植的人。世界上第一例心脏移植是南非医生班纳德于1967年成功完成的。后来一段时间,由于死亡率高,医生们停止了对心脏移植的尝试。直至20世纪80年代初期,由于免疫仰制剂环孢菌素A的应用,大大降低了排异反应,使心脏移植手术效果日趋良好,在世界范围内又重新掀起了心脏移植热潮。到80年代末,有记录的心脏移植数已超过1万多例,至今已累积了25331例。我国也成功地进行了数例心脏移植手术。现在心脏移植已经度过实验阶段,被作为中长期心脏病的治疗手段。目前,世界上先进国家的心脏移植的年存活率已达80~85%,患者存活1年以后再出现排斥发生率明显减少,5年存活率也已达到80%。

左边的小心脏是被替换下来的心脏,右边是已经移植到位的正常大小的心脏由于心脏与肺的功能密切相关,有时可因肺部疾病影响心脏,此时便需要心、肺同时更换,这就是心—肺联合移植。1981年3月,美国斯坦福大学医院将一名因车祸脑外伤致死的15岁男性的心脏和肺脏,同时移植给了一名45岁心功能衰竭的女性患者,使她获得了长期的存活。从此开辟了心—肺联合移植的新领域。然而,由于此项手术更加复杂,目前3年存活率大约只达70%,因此尚有许多问题要去解决。肾脏移植肾脏移植始于1954年,一位叫缪瑞的医生给一对双胞胎姐妹做了这种手术,至今她们都很健康。迄今全世界移植手术的总例数已超过16万人次,我国肾移植数也已达11000多例。移植后存活3年以上者有1845例,存活5年以上者有772例,存活10年以上者103例。在1万多例手术中能活10年以上的只有100多例,是否存活率太低了?是的,这也反映出这种手术的难度以及有许多医学问题需要我们去解决。

首先,一个最主要的难题是外来的肾脏能否在接受移植者体内“安家落户”,因为至今仍没有好办法让接受者不排斥他人的肾脏,这种现象医生们称之为“排异反应”。

因此,如何防止“排异反应”是器官移植能否成功的最为关键的因素。那么,什么是排异反应呢?要讲请这个问题,我们还得再讲一下人体中的免疫系统。人体的免疫系统好比我们身体的防御体系,它具有识别自身组织以及“外来入侵者”的本领。对于自身组织它加以保护,而对于“异己分子”,则该系统中的卫士——免疫淋巴细胞便会紧急动员起来,包围入侵者,同时释放出某些毒素、抗体将它们杀灭或是溶解,这种过程就是排异反应。医生们常将机体的这种过程称为“宿主抗移植物反应”。因为器官移植时还会发生另一种反应,即外来的免疫系统也会排斥宿主组织,尤其是当给那些无免疫功能的病人移植外来组织时更加激烈,这称为“移植物抗宿主反应”,这种现象在骨髓移植中非常普遍。

为了让移植的器官能在接受者体内长期定居,医学家们目前都在想办法来制止这种排除异己的“相互残杀”,这就是医生们所说的“抗排异治疗”。当前,抗排异治疗的方法主要有两种,一种叫“免疫耐受治疗”,就是在移植前预先注射能保护移植器官的药物,使其不受免疫淋巴细胞的攻击;另一种方法是免疫抑制疗法,就是通过抑制机体的免疫系统,使其无力对移植物发起攻击。后者是目前应用最普遍的方法。在肾脏移植中,最有效的是以环孢菌素A、硫唑嘌呤和糖皮质激三联用药来抑制受体的排异反应。后来医生们发现,用单克隆抗体治疗肾脏移植的急性排异效果也很好。最新的研究则指出,决定排异反应的一个重要因素是因为白细胞上存在膜抗原,而膜抗原是由染色体上某些基因控制的。因此,今后应通过改变控制移植抗原的基因,这样就可以大大提高器官移植的成功率。这是属于基因工程的问题,有待于人们继续探索。

肝脏移植

从外科的角度来看,这是最困难的一种移植。大夫在取下供主肝脏时,为了不损伤血管和胆管,得花费整整4个小时。在取下受主的病肝时,更得小心翼翼,以免损伤毗邻的腹腔中的成千上万根微细的血管。植入时得连接好5个主要部位:腔静脉上、下部分,门静脉、肝动脉和纤细的胆管。

同肾脏移植相比,肝脏移植的缝合长度要多2倍。

肝脏作为一个多功能的复杂器官,在植入后到病人临死时都必须工作,所以稍微受损伤都是不行的。使用了环孢菌素以后,匹兹堡大学肝脏移植受主的1年存活率,已由1979年前的33%增加到今天的66%。

骨髓移植

骨髓是充盈于骨内腔隙中的柔软组织,其中含有不同发育阶段的血细胞。骨髓是人体中,尤其是出生后的最主要的造血器官之一。因此,骨髓的某些疾病会造成人体的贫血,要是骨髓细胞发生癌变,形成白血病,则更会威胁人的生命,在这些情况下,医生往往会考虑对患者进行骨髓移植。

世界上最早从事骨髓移植的人是美国医生托马斯,他首次将一位正常孪生哥哥的骨髓输给了患白血病的兄弟。由于他成功地完成了骨髓移植术,于1990年获得了著名的诺贝尔奖金。

一般说来,进行骨髓移植时,先要将有病的骨髓抽出,或者将骨髓中的癌细胞杀死,然后将健康与合适的骨髓注入患者体内,让它们在病人骨内腔隙中“安家落户”,并且不断地繁殖来纠正病人的“贫血症或是以此来治疗白血病”等。那么什么是合适的骨髓呢?这是指移植进去的骨髓不会发生我们在前面提到过的“宿主抗移植物的反应”,或是“移植物抗宿主的反应”,因此,一般只有“同卵双生”,即孪生兄弟或姐妹之间才可互相进行骨髓移植,因为他(她)们之间的骨髓与组织不会发生相互排斥反应。此外,不是孪生者,或是父母与子女之间是否可以进行骨髓移植呢?这要进行“基因配型”才能确定,通常他们之间互相提供骨髓的可能性是25%。

目前全球大约进行了3万多例骨髓移植。我国早在20世纪60年代便开始了同基因骨髓移植(孪生者之间),并取得成功。当前摆在我国以及全世界医学家面前的任务是如何能成功地进行异基因骨髓移植(不是孪生者之间的移植),甚至异种骨髓移植。对此困难仍很多,或许也可以这样说“任重而道远”,但前途是无限光明的。

脑移植

1994年春天,瑞士发生了一起严重车祸,突遭横祸的一对相恋男女被送到医院时已将命归黄泉。医生们发现,男的四肢和躯干血肉模糊,支离破碎,而脑袋却完好无损;女的则相反,头颅粉碎破裂,身躯完整无缺。一名在场的医生忽然开口道:“两人合在一起,正好重新拼成一个人。我们何不进行头脑移植?”这真是个绝妙的主意。

同类推荐
  • 本草纲目(家庭健康生活)

    本草纲目(家庭健康生活)

    明代医学家李时珍穷毕生之力撰著的《本草纲目》是我国古代医学宝库中珍贵的科学遗产。它以精深的学术和丰富的内涵,赢得了国内外医学界和其他学术界的珍视,有“中国古代百科全书”之称,对治疗疾病和促进人类的健康起到了重大作用。
  • 循环系统疾病诊治绝招

    循环系统疾病诊治绝招

    本丛书共8册,包括《呼吸系统疾病诊治绝招》、《消化系统疾病诊治绝招》、《循环系统疾病诊治绝招》、《泌尿系统疾病诊治绝招》、《内分泌系统疾病诊治绝招》、《血液系统疾病诊治绝招》、《神经系统疾病诊治绝招》、《风湿性疾病诊治绝招》。每书均以现代医学病名为纲,以病统方,意在切合临床实际。每病先介绍该病的基本概念、病因、临床表现、辅助检查等内容,而后顺序介绍全国各地的老中医经效验方,以供辨证选用,每首方剂均注明【处方】、【主治】、【用法】等内容。本书旨在总结临证有效方剂,而不以学术探讨为目的,因此,药物组成、用量或比例均严格忠实于原方创制者,不做任何调整或补充。
  • 精选妙用中草药治疗疑难杂病

    精选妙用中草药治疗疑难杂病

    慢性阻塞性肺气肿是由于吸烟、大气污染、呼吸道感染等有害因素引起的呼吸系统慢性疾病,以广泛小气道阻塞、终末细支气管远端气道弹性减退、过度膨胀充气为特征。本病的病理改变呈进行性发展,可伴有气道高反应性。临床主要表现为咳嗽、咯痰、进行性加重的呼吸困难,疾病晚期多出现肺动脉高压,进展为慢性肺源性心脏病。
  • 中医外科学

    中医外科学

    本书内容能够反映中医外科传统的诊疗技术及当代中医外科临床治疗水平,适合中医专业本科及硕士、博士研究生阅读参考。
  • 华佗神方治百病

    华佗神方治百病

    全书涉及到病理、诊断、临症、炼药、养性服饵以及内科、外科、妇科、产科、儿科、耳科、鼻科、眼科、齿科、喉科、皮肤科、伤科、结毒科、急救科、治奇症、兽医科等各种常见病症的证治与方药,并有经验秘方,累计数干余方。其用药简便廉验,功于实用,实为一部简便实用的中医临症方书。 家庭生活必备书,处方用药好良师,全书涉及到病理、诊断、临症、炼药、养性服饵以及内科、外科、妇科、产科、儿科、耳科、鼻科、眼科、齿科、喉科、皮肤科、伤科、结毒科、急救科、治奇症、兽医科等各种常见病症的证治与方药,并有经验秘方,累计数干余方。其用药简便廉验,功于实用,实为一部简便实用的中医临症方书。
热门推荐
  • 将军的贱夫人

    将军的贱夫人

    嫁进去没几天,就被认为是杀人犯,给人下毒了,好!她忍。又说她和别的男人勾三搭四的!好!她也忍!可是好了没有几天以后,突然开始翻脸,还说她和别的男人上床了!忍无可忍,无需再忍,尼玛,姐不是软柿子,任你捏的!
  • 君心楼之泊尘梦

    君心楼之泊尘梦

    我,沈君烈,江湖第一公子,君心楼圣主,18岁便成江湖霸主。就在这年我离开君心楼,江湖再此掀起一场腥风血雨,暗处的敌人又会上演什么戏码,离开君心楼让君涟引出敌人,为利益,牺牲的是什么?是亲情,是友情,还是爱情,如果一个人的婚姻都能成为筹码,那我就是那个筹码种下的孽,颜涵楚,洛轻瑟,叶梓杺,只可惜身在泥潭不可自拔,接近我,你又为的究竟什么?阴谋直到知道我的故事开始……战,终归田园山水…….
  • 无双武神

    无双武神

    一万年太久,只在今昔。亘古太匆匆,唯有真我。一代枪皇飞升之际,投掷天灵器配枪于落日峰巅,至此,世间灵器,再无枪之一种。万载之后,他自某一时空而来,化身玄家一废人,却幸得天灵器落日神枪,从此步步升华,踏上天之巅峰,揭开一幕亘古画卷。原来,一切如是。
  • 别惹我我不好惹

    别惹我我不好惹

    一个小孩在收拾屋子,这是咋了!一个箱子一个石头!可以修炼!你在逗我呢!
  • 绝世逆战

    绝世逆战

    她常年一身黑袍于身绝世容颜现世。她是独身一人闯入龙潭虎穴,只为一个立足之地。她是众所周知的翩翩佳公子修夜。她是大陆少女爱慕相许的修少爷。她是出了名的废材体质,周身跟随着众多强大的契约兽。她也是公子家温雅风趣的七少爷。欺她护着的人,一个字—死。她是江湖人鬼闻之丧胆的鬼面组织的缔造者。她的真实身份扑朔迷离,她到底是何人?她以一人之力成为整个大陆无人可及的神话,只为寻前世之谜。
  • 缘落成双

    缘落成双

    本文旧文新开,有大修,不过故事框架还在,希望多多捧场我撇了一眼轿外是盛开到凋谢的繁华初相遇“人道药扇公子,风流倜傥,盈盈公府步,冉冉府中趋。”边说她边一个俯身,竟用拇指同食指掂起夏沅的下巴。再抬眼是叱咤杀场的将军夏奕。三回眸是茫茫人海里的水袖四起隔着木板似有一阵窃笑“姑娘若喜欢,便赠予你。”四戚戚一朝桃夭鸿雁在云鱼在水,惆怅此情难寄。五相守一缕青丝一段情丝络纬秋啼金井阑,微霜凄凄簟色寒。孤灯不明思欲绝,卷帷望月空长叹。美人如花隔云端,上有青冥之高天,下有渌水之波澜。天长地远魂飞苦,梦魂不到关山难。长相思,摧心肝
  • 美容营养学教程

    美容营养学教程

    每一个人都希望自己皮肤光滑润泽,富有朝气,体形矫健优美,渴望延缓衰老,而要做到这些,只有从改善营养,改良肌肤赖以生长发育的内环境着手,才能彻底地美化肌肤,健美形体,焕发青春的活力。食物中的蛋白质、脂肪、糖类、无机盐、维生素、水和膳食纤维等是人体健康和颜面美容所必需的营养素。这些营养素的主要来源是食物。因此,全面合理地从食物中摄取平衡的营养,是美容健体最重要的物质基础。
  • 我不是妖怪我是超人

    我不是妖怪我是超人

    谁说的建国后动物都不能成精,看着眼前那一匹巨狼,这几名伪装成货车司机的老兵没有过多惊讶,紧了紧手里的匕首。
  • 神之怒:背叛

    神之怒:背叛

    神历304年,大地之神联合神族督军反叛神族,抢走了神剑沃格特之剑,并自称圣族,天神为了保住神族的领导,只好动用地球上半神的力量,一个少年的生活因此改变
  • 蓝色精灵

    蓝色精灵

    冥冥中聂小燕感知到了自己的存在。她感到自己像是在一个无限的空间里轻轻地晃动着,翻转着,渐渐地,这种感觉变得越来越强烈!正当聂小燕似乎意识到了点什么想要睁开眼睛时——蓦地!一股强大的力量, 让她再一次陷入到了一个无尽的黑暗之中……天空拥有着像蓝色宝石一般晶莹润泽细腻柔和的质感……