登陆注册
14109200000003

第3章 氢的存在方式

氢气可以以3种状态存在,即气态、液态和固态。下面就其特性分别加以叙述。

气体氢

通常情况下,氢气以气态的形式存在。其性质(物理属性、化学属性)、制备和储运将在后面的章节予以详细论述。

液体氢

在一定条件下,气态氢可以转化成液态氢。

我们先来看一下液氢的生产。氢作为燃料或作为能量载体时,液氢是其较好的使用和储存方式之一。因此液氢的生产是氢能开发应用的重要环节之一。氢气的转化温度很低,最高为20.4开,所以只有将氢气冷却到该温度以下,再节流膨胀才能产生液氢。

常温时,正常氢或标准氢(n-H2)含75%正氢和25%仲氢(正氢和仲氢是氢的两种同素异构体。一般认为分子是由两个原子的自旋方向的不同组合而成的。当两个原子核都顺时针旋转时,它们的自旋方向平行,就是正氢。当两个原子核自旋方向反平行时,则是仲氢)。低于常温时,正—仲态的平衡组成将随着温度而变化。在氢的液化过程中,生产出的液氢为正常氢,液态正常氢会自发地发生正—仲态转化,最终达到相应温度下的平衡氢。由于氢的正—仲转化会放热,这样,液氢就会发生气化;在开始的24小时内,液氢大约要蒸发损失18%,100小时后损失将超过40%。为了获得标准沸点下的平衡氢,也就是仲氢浓度为99.8%的液氢,在氢的液化过程中,必须进行正—仲催化转化。

液氢的生产通常有3种方法,分别是节流氢液化循环、带膨胀机的氢液化循环和氦制冷氢液化循环。节流循环是1859年由德国的林德和英国的汉普逊分别独立提出的,所以也叫林德或汉普逊循环。1902年法国的克劳特首先实现了带有活塞式膨胀机的空气液化循环,所以带膨胀机的液化循环也叫克劳特液化循环。氦制冷氢液化循环用氦作为制冷工质,由氦制冷循环提供氢冷凝液化所需的冷量。

从氢液化单位能耗来看,以液氮预冷带膨胀机的液化循环最低,节流循环最高,氦制冷氢液化循环居中。如以液氮预冷带膨胀机的循环作为比较基准,那么节流循环单位能耗要高50%,氦制冷氢液化循环高25%。所以,带膨胀机的循环效率最高,但流程简单,没有在低温下运转的部件,运行可靠,所以在小型氢液化装置中应用较多。氦制冷氢液化循环消除了处理高压氢的危险,运转安全可靠。但氦制冷系统设备复杂,因此在氢液化过程中应用得不多。

接下来我们来谈一下凝胶液氢(胶氢)。液氢虽然是一种液体,但是它具有与一般液体不同的许多特点。例如,液氢分子之间的缔合力很弱;液态范围很窄(-253℃~-259℃);液氢的密度和黏度都很低;液氢极性非常小,离子化程度很低或者不存在离子化等。一般来说,液氢的物理性质介于惰性气体和其他低温液体之间。除了氦以外其他任何物质都不能溶于液氢。

液氢的主要用处是做燃料,液氢作为火箭燃料有下列缺点:

(1)密度低。符合固体推进剂密度为1.6~1.9克∕立方厘米,可储存液体推进剂的密度为1.1~1.3克∕立方厘米,而液氢的密度只有0.07克∕立方厘米;

(2)温度分层;

(3)蒸发速率高,造成相应的损失和危险;

(4)液氢在储箱中晃动引起飞行状态不稳定。

为了克服液氢的不足,科学家们提出,将液氢进一步冷冻,生成液氢和固氢混合物,即泥氢(slush hydrogen),以提高密度。或在液氢中加入胶凝剂,成为凝胶液氢(gelling liquid hydrogen),即胶氢。胶氢像液氢一样呈流动状态,但又有较高的密度。

与液氢相比,胶氢的优点表现在:

(1)安全性增加。液氢凝胶化后黏度增加1.5~3.7倍,降低了泄漏带来的危险性。

(2)蒸发损失减少。液氢凝胶化以后,蒸发速率仅为液氢的25%。

(3)密度增大。液氢中添加35%甲烷,密度可提高50%左右;液氢中添加70%(摩尔比)铝粉,密度可提高300%左右。

(4)液面晃动减少。液氢凝胶化以后,液面晃动减少了20%~30%,这有助于长期储存,并能简化储罐结构。

(5)比冲提高(比冲是内燃机的术语,也叫比推力,是发动机推力与每秒消耗推进剂质量的比值。比冲的单位是牛·秒∕千克),提高发射能力。

固体氢

固体氢具有许多特殊的性能,所以固体氢是科学家多年追求的目标。

如何制备固体氢呢?将液氢进一步冷却,达到-259.2℃时,就可以得到白色固体氢。

固体氢的用途主要表现在:

一是可以做冷却器。固体氢在特殊制冷方面可以发挥作用。有这样一个实例,它就是由于氢冷却器的失效而导致天文探测器失效的。

1999年3月4日,美国航空航天局发射了一颗名叫“宽场红外线探测器(WIRE)”的人造卫星。按计划这个重255千克的探测器将用30厘米口径的红外线望远镜研究星系的形成和演变过程。该望远镜是一台非常灵敏的仪器,需要一个使用固态氢的低温冷却系统。固态氢升华才能使它保持-267℃(近似绝对零度)的低温。原先设计只要该望远镜对准太空深处,装有固态氢的低温冷却系统就能够持续工作4个月。但是当控制人员向它发出一个指令导致卫星发生误动作时,固态氢提前升华,而且升华速度非常快,形成了一股气流,使卫星以60转/分的速率开始自旋,最后失灵。

二是高能燃料。物理学家指出,金属氢还可能是一种高温高能燃料。现在科学家正在研究一种“固态氢”的宇宙飞船。固态氢既作为飞船的结构材料,又作为飞船的动力燃料。在飞行期间,飞船上所有的非重要零件都可以转作能源而“消耗掉”。这样飞船在宇宙中的飞行时间就能更长。

三是高能炸药。氢是一种极其易燃的气体,被压成固态时,它的爆炸威力相当于最厉害的炸药的50倍。目前还没有人在实验室里制成过这种固态氢,但它却一直是军事研究的目标。

那么固体氢在什么条件下会变成金属呢?在很高的压力下,分子固体氢可能成为金属态。

有计算表明,固体氢在300吉帕的压力下通过与分子相本身的谱带交叠应当会变成一种金属。现在,研究人员在高于这一压力,即在高达320吉帕的压力下获得了光谱测量结果。虽然仍没有发现金属氢,但是第一次观测到了带隙随密度的明显的定量变化。在这个压力下,氢完全变成了不透明状态,但这种所谓的“黑色氢”还不是金属。据预测,直接带隙的闭合应当在450吉帕左右的压力下出现,这是人们探索金属氢的下一个目标。

根据物理学理论研究可知,金属氢还可以在一定条件下转化为超导体。

大多数人都会奇怪,为什么有人会想起把氢变成金属呢?其中确实发生了一些有趣的故事。

1989年5月,美国华盛顿卡内基研究所的毛何匡和鲁塞尔·赫姆利宣布,他们用250万个标准大气压,把氢气压成了固体氢。这种氢不仅密度高(0.562~0.8克/立方厘米),而且具有金属导电性,是一种储能密度极高的能源材料。

氢在常温下本是一种不导电的气体,卡内基研究所怎么会想到要研究能导电的金属氢呢?原来,他们认定,在化学元素周期表中,氢和锂、钠、钾、铷、铯、钫都是同属ⅠA族元素,但除氢外,其他成员都是金属,因此气态氢有可能在高压下变成导电的金属氢。一是氢和锂、钠、钾等元素是同族元素,有“亲缘”关系;二是从金属的特性分析,氢有可能压成金属氢。

根据这种分析,毛何匡和赫姆利开始了实验。他们取来纯度很高的氢气,放在一个能承受极高压力的金刚石之间的密闭装置内,在-196℃的低温下逐渐加压到250万个大气压。结果发现气态氢从透明状态逐渐变成了褐色,最后变成为有光泽的不透明固体,导电性也发生了变化,由绝缘逐渐变成半导体,进而变成为导电体。于是他们于1989年5月初在美国地球物理协会上报告了这项实验成果。

但两年后有人对这一结果表示怀疑。美国科内尔大学的阿瑟·劳夫和克雷格·范德博格认为,毛何匡的实验容器内含有红宝石粉末,红宝石的主要成分是氧化铝。劳夫和范德博格认为,可能是氧化铝和氢气在高压下形成铝金属,而不是真正的金属氢。而且,毛何匡以后也没有再报道过研究金属氢的进展情况。

可见,制造金属氢的难度有多大,人们估计,有可能需要几代人的努力才能取得突破性进展。目前,美国、俄罗斯和日本等国都宣布过用高压技术观察到了金属氢的现象,但在压力卸除后金属氢又变成了普通的氢气。因此,尽管金属氢对人们有巨大的吸引力,但在常压下要得到稳定的金属氢,还要攻克许多难关。

不过,持乐观态度的科学家认为,这个问题总有一天会解决,因为石墨在高温、高压下变成金刚石后,就能在常温下长期稳定地存在。因此,尽管困难重重,科学家们仍以坚韧不拔的毅力在从事金属氢的研究。

毛何匡和赫姆利还认为,研究金属氢有两方面的意义:一是金属氢有希望成为高温超导体,还能做核聚变的燃料,即高能量密度而无污染的能源;二是金属氢的研究还有助于解决理论物理和天体物理中存在的一些长期未能解决的问题,例如天文学家在观察太阳系的土星、木星、天王星和海王星这些天体时,发现有金属氢核心,他们非常希望知道,在多高的压力和温度下氢会变成金属氢。

一旦金属氢问世,就如同以前蒸汽机的诞生一样,将会引起整个科学技术领域的一场划时代的革命。

金属氢是一种亚稳态物质,可以用它来做成约束等离子体的“磁笼”,把炽热的电离气体“盛装”起来,这样,受控核聚变反应使原子核能转变成了电能,而这种电能既是廉价的也是干净的,在地球上就会很方便地建造起一座座“模仿太阳的工厂”,人类将最终解决能源问题。

金属氢又是一种室温超导体,它将甩掉背在超导技术“身上”的低温“包袱”。超导材料是没有电阻的优良导体,但现在已研制成功的超导材料的超导转变温度多在-250℃左右,这样的低温工作条件,严重地限制了超导体的应用。金属氢是理想的室温超导体,因此可以充分显示它的魅力。

用金属氢输电,可以取消大型的变电站而输电效率在99%以上,可使全世界的发电量增加1/4以上。如果用金属氢制造发电机,其重量不到普通发电机重量的10%,而输出功率可以提高几十倍甚至上百倍。

金属氢还具有重大的军用价值。现在的火箭是用液氢作燃料,因此必须把火箭做成一个很大的热水瓶似的容器,以便确保低温。如果使用了金属氢,就可以制造更小而又十分灵巧的火箭。金属氢应用于航空技术,就可以极大地增大时速,甚至可以超过音速许多倍。由于相同质量的金属氢的体积只是液态氢的1/7,因此,由它组成的燃料电池,可以很容易地应用于汽车,那时,城市就会变得非常清洁、安静。

金属氢内储藏着巨大的能量,比普通TNT炸药大30~40倍。因此,金属氢聚变时释放的能量要比铀核裂变大好多倍。伴随着金属氢的诞生必将会产生比氢弹威力大好多倍的新式武器。

目前,世界上的高压实验室已达100多个。我国已研制成功了能产生100万个标准大气压的压力机。我国成功研制的“分离球体式多级多活塞组合装置”能产生200万个标准大气压。近年来,中国等几个国家宣布已在实验室内研制成功了金属氢,这是人类在研究金属氢的道路上迈出的可喜的一步。而要使金属氢大规模投入工业生产,还有相当大的困难。但它已有力地推动和促进了超高压技术、超低温技术、超导技术、空间技术、激光以及原子能等20多门科学技术向着新的深度发展。

从理论上来看,在超高压下得到金属氢确实是可能的。不过,要得到金属氢样品,还有待科学家们进一步研究。

金属氢的出现是当代超高压技术创造的一个奇迹,也是目前高压物理研究领域中一项非常活跃的课题。

同类推荐
  • 奖罚分明,让学生心悦诚服

    奖罚分明,让学生心悦诚服

    本书从引导鼓励的角度出发,总结出一套科学、系统的表扬、激励与奖励学生的方式、方法。书中对优秀的方法给与极大的鼓励。
  • 简爱(语文新课标课外读物)

    简爱(语文新课标课外读物)

    现代中、小学生不能只局限于校园和课本,应该广开视野,广长见识,广泛了解博大的世界和社会,不断增加丰富的现代社会知识和世界信息,才有所精神准备,才能迅速地长大,将来才能够自由地翱翔于世界蓝天。否则,我们将永远是妈妈怀抱中的乖宝宝,将永远是温室里面的豆芽菜,那么,我们将怎样走向社会、走向世界呢?
  • 北大人生规划

    北大人生规划

    本书从学习、为人处世、创新、创业、心理调理、出国留学、求职面试、管理、入世9个方面分别阐述北大人的人生规划。所有的内容都是北大的学子们亲手操笔,把他们的秘密归纳总结。可以这么说,本书是学生的稀世之宝,是交际学中的霸王花,是创新者必读之本,是创业者的指南针,是心理调整者的瑰宝,是考研出国者的铺路石,是求职者的最好老师,是管理者的灵魂。
  • 历届新概念一等奖获得者作文精选(小说卷)

    历届新概念一等奖获得者作文精选(小说卷)

    新思维所有作品都体现出了作者的创造性、发散性思维,作者们打破旧观念、旧规范的束缚,打破僵化保守,处在无拘无束的新思维中创作所得。新表达作品的创作不受题材、体裁限制,作者使用属于自己的充满个性的语言,杜绝套话,杜绝千人一面,杜绝众口一词。真体验真实、真切、真诚、真挚地关注、感受、体察生活,并将这一切,反映在作品中。
  • 高考志愿填报诀窍

    高考志愿填报诀窍

    “填报志愿比考大学还难!”许多考生家长都有这样的感慨。《高考志愿填报诀窍:考生和家长必须知道的100个真相》重点针对新一届高考生,从“院校篇”“专业篇”“政策篇”及“技巧篇”四个方面着眼,全面揭示填报高考志愿的100个真相,避免考生及家长步入填报误区,最终帮助考生升入理想且适合自己的学校和专业。本书是基于2013年版本基础上的最新修订版,作者紧跟最新高考政策,全面补充完善高考志愿填报资料,新增工具表格索引,内容更新、资料更全、查阅更方便。
热门推荐
  • 家有青春期男孩:父子共战青春期必读书

    家有青春期男孩:父子共战青春期必读书

    我们知道,好妈妈胜过好老师,也胜过好学校。其实,好爸爸一样胜过好老师,也一样胜过好学校。但是,你做到了吗?如何说孩子才会听,如何听孩子才肯讲?你做到了吗?如果你不知道如何做到上述两点,请阅读并实践《家有青春期男孩》,其中的各种技巧与理念,一定会让你成为一个好爸爸!让你这个好爸爸胜过好妈妈,胜过好老师,也胜过好学校。
  • 红颜,名动天下

    红颜,名动天下

    蓝素颜被家族遗弃,却华丽的闪瞎了无数的钛合金狗眼!某国际集团以她为首是瞻,某黑暗王者任她摆布。某只大灰狼甘心替她跑腿。她其实很低调?对的!低调的嚣张。
  • 心理司马

    心理司马

    年轻时他心存理想,却在乱世中屡遭险境;从曹操、曹丕到曹叡,他辅佐曹氏三代,渐渐摸索出权力之道;逆境中坚忍不发,出手时残忍无情,他是用兵和政治的绝顶高手--司马懿是三国时代的大赢家,但他为生存而孤独挣扎的曲折心路又有谁知道?
  • 十三少剑

    十三少剑

    谁说无敌于天下就是江湖人的梦?那是他们不懂无敌的寂寞。十三个师兄弟一起闯荡江湖,那些鲜衣怒马的少年,语笑嫣然的少女,刀剑如梦,岁月如催。转眼间便是红尘百年,那些在江湖上抛头颅洒热血的岁月如今已经渐行渐远渐无书。一代江湖一代人,江湖年年只相似,英雄少年各不同。当年听雪楼主萧忆情,如今剑神十少楚天情。看岁月冷暖,云卷云舒,听一曲天下有雪。
  • 长灵守卓禅师语录

    长灵守卓禅师语录

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。
  • 南宗顿教最上大乘摩诃般若波罗蜜经六祖惠能大师于韶州大梵寺施法坛经

    南宗顿教最上大乘摩诃般若波罗蜜经六祖惠能大师于韶州大梵寺施法坛经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 奸细逆袭记

    奸细逆袭记

    他出得了厅堂,入得了厨房,扮得了奸细,唬得过老板,装得了女人,嫁得了流氓。但是!他一二十九世纪堂堂龙组终极脑力大老板,为什么会出现在这么个地方?老天,就算我残忍地拆散了一对夫妻,也不至于这么对我吧?还有,这位大爷,我可是你的敌人派来的的奸细。你可不可以敬业一点,让我离你们的秘密远一点?
  • 无限之英雄传说

    无限之英雄传说

    这是一个类似古罗马竞技场一般的巨大建筑,宽阔平整的操场,数百个穿着囚衣的人三五成群的低声交谈,还有人在做运动,引体向上,打篮球。操场的尽头是一座高达十米的围墙,围墙墙体极厚,上方站着十多名身着制服的警员,他们全身武装举着枪警戒的望着围墙下的众人,将整座操场完全的监视起来了。
  • 狂魔的小娇妻:腹黑丹师

    狂魔的小娇妻:腹黑丹师

    谁家女儿呆木痴傻?谁家女儿骤然暴富?谁家女儿竟然引得三界一众奇男,齐齐心悦?又是谁家女儿成了上仙爱徒?狂魔爱妻?众人皆知,她就是封魔大陆西凤国君的爱女——丹神公主,云晨曦。据说她贪吃,贪财,喜欢穷折腾。架不住她人美,手狠,银子多!
  • 风淡云轻之愛魅涌动

    风淡云轻之愛魅涌动

    聪慧如我,冷漠如我,调皮捣蛋也如我……我初入那所IP贵族学校,一天之内竟然遇到几位如神一般的男人,我还被调戏了。在这里我痛彻心扉过、也欣喜若狂过。而我仿佛拥有玛丽苏光环一样,身边的男人连续不断,个个还珍我如宝。他,冷漠如冰;他,狂野如王;他,温柔如水;他,邪魅如魔。当我知道那些戏弄过我的男人是我老师时,我无力望着苍天。他待我如命。当我知道他是唯一对我好的亲人时,我高兴若狂。而他对我的感情以超出了亲人的范围外。我该如何对待那些爱我入骨的男人呢……