登陆注册
12490100000007

第7章 数学教学的趣味运用推荐(1)

1.流传久远的算术趣题

古代俄罗斯民间流传着这样的算术题:

“路上走着七个老头儿,

每个老头儿拿着七根手杖,

每根手杖上有七个树杈,

每个树杈上挂着七个竹篮,

每个竹篮里有七个竹笼,

每个竹笼里有七只麻雀,

总共有多少麻雀?”

老头儿数是7,手杖数是77=49,树杈数是777=497=343,竹篮数是7777=3437=2401,竹笼数是77777=24017=16807,麻雀数是777777=168077=117649。总共有十一万七千六百四十九只麻雀。七个老头儿能提着十一万多只麻雀遛弯儿,可真不简单啊!若每只麻雀按20克算,这些麻雀有2吨多重呢!

2.惊人的老鼠繁殖

一对老鼠原也没什么稀奇,但谈到它们的繁殖能力,确实叫人大吃一惊。

这是日本古代一本有名的算术书《尘劫记》里的题目。

“正月里,有2只大老鼠生了12只小老鼠,这两代共计是14只。

这些长大了的老鼠在二月里互相成亲,每对(2只)都生了12只小老鼠,连大带小共计是98只。三月里又有49对老鼠各生下12只小老鼠。这四代共计是686只。

这样,每月一回,父母、儿女、孙子、曾孙子、子子孙孙,总是每对生12只,那么12个月里将变成多少只呢?”

经过计算,是二百七十六亿八千二百五十七万四千四百零二只。这是多么大的数字,又是多么惊人的繁殖能力呀!

3.全体数字向我朝拜

小朋友,你们听说过维纳这个名字吗?诺伯特·维纳是20世纪最伟大的数学家之一,如今被广泛应用的数学分支信息论、控制论都是由他奠定基础的。

维纳有着非常高的天资。据说,他3岁就能读会写,7岁时就能阅读和理解着名诗人和科学家高深的着作。他大学毕业的时候才14岁,过了几年,他又获得了世界闻名的美国哈佛大学的博士学位。

在授予维纳博士学位的仪式上,来了很多客人。其中有一位嘉宾看到年轻的维纳,好奇地问他:“你今年多大啊?”

维纳虽然获得了博士学位,但毕竟还是个孩子,听别人这样问他,不禁就想当众显示一下自己的才智。他说:“我今年的岁数,连续乘三次,是个四位数;连续乘四次,是个六位数;两个数正好是把0、1、2、3、4、5、6、7、8、9全部用上去,而且既没有重复,又没有遗漏。这意味着,全体数字都向我朝拜,预祝我将来在数学领域里干出一番大事业来!”

维纳这么一说,好像给所有在座的嘉宾出了一道智力题一样,大家都在纷纷议论,维纳到底有几岁。其实,这个题目说难也不难。只要多试几次,就可以了。假定维纳的年纪是在20岁左右,那么我们可以把20上下的数字都来试一试,看看是不是符合这些条件。我们看到,222222等于10648,已经是五位数,所以不合条件,可以排除。而17171717等于83521,又小了,不符合乘四次是个六位数的条件。这样一来,答案就在18、19、20、21之间了。202020=8000,19191919=130321,21212121=194481,这几个结果里都有重复的数字,所以也不合题意,最后就剩下18了。我们来看看:

181818=5832

18181818=104976

果然没有重复的数字。所以,维纳当时应该是18岁。

4.韩信暗点兵

我国汉初军事家韩信,神机妙算,百战百胜。传说在一次战斗前为了弄清敌方兵力,韩信化装到敌营外侦察,隔着高大寨墙偷听里面敌将正在指挥练兵。

只听得按3人一行整队时最后剩零头1人,按5人一行整队时剩零头2人,7人一行整队时剩零头3人,11人一行整队时剩零头1人。据此韩信很快算出敌兵有892人。于是针对敌情调兵遣将,一举击败了敌兵。这就是流传于民间的故事“韩信暗点兵”。

“韩信暗点兵”作为数学问题最早出现在我国的《孙子算经》中。原文是:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何子”

用现代话来说:“现在有一堆东西,不知它的数量。如果三个三个地数最后剩二个,五个五个地数最后剩三个,七个七个地数最后剩二个,问这一堆东西有多少个?”

该书给出的解法是:

N=702+213+152-2105

这个解法巧妙之处在于70、21、15这三个数。

70可以被5和7整除,并且是用3除余1的最小正整数,因此270被3除余2;

21可以被3和7整除,并且是用5除余1的最小正整数,因此321被5除余3;

15可以被3和5整除,并且是用7除余1的最小正整数,因此215被7除余2。

这样一来,702+213+152被3除余2,被5除余3,被7除余2。这个数大于100,容易算出3、5、7的最小公倍数是105。从这个数中减去两倍的105,不会影响被3、5、7除所得的余数。

N=702+213+152-2105=23

仿照《孙子算经》中“物不知数”问题的解法,来算一算“韩信暗点兵”:N=3851+2312+3303+2101-1155=2047-1155=892

“韩信暗点兵”在中国古代数学史上有过不少有趣的别名,如“鬼谷算”、“秦王暗点兵”、“剪管术”、“隔墙算”等。

这就是着名的“中国剩余定理”或“孙子剩余定理”。

5.到底有多少兔子

你知道澳大利亚吗?它位于南半球,是大洋洲的一个国家,它的国土全都被海洋包围着。我们今天先讲的是一个澳大利亚和兔子的故事。

本来,澳大利亚没有兔子,1859年,一家动物园引进了24只兔子,供人们观赏。可是几年后的一天,动物园失火了,关兔子的栅栏被烧毁,兔子全都跑了出来,变成了野兔。谁也没有想到,兔子繁殖的速度竟会是这样惊人,短短几十年的时间,就达到了40多亿只。它们破坏庄稼,和牛羊争吃牧草,造成的损失十分巨大,使人们大伤脑筋。尽管人们采取了大量措施,可是兔子的祸害还是不见减轻。

为什么兔子会繁殖得这么快呢?我们再讲一个故事,你就会知道了。12世纪,意大利有位叫做斐波那契的数学家写了一本《算盘书》的着作,他在里面说明了怎样应用阿拉伯数字,和如何用它们进行加减乘除计算和解题。在其中,他通过一个有趣的故事,出了一道题:“如果一对兔子每月能生1对小兔子,而每对小兔子在它出生后的第3个月里,又能开始生1对小兔子,假如每只兔子都能活下来,那由第一对兔子开始,1年后能有多少对兔子?”从第一个月开始,兔子的对数就依次为1,1,2,3,5……,可以看出,从第三项开始,每一项都等于前两项之和,而一年后,就是1+(1+2)+(1+1+2)+(1+1+2+1+1+2)……一直加到第十二个月,那么,共有兔子144对,共有288只,而如果按这个规律再往下写下去,增加的速度是特别惊人的,到第571个月,就是说到第47年的时候,一共有多少兔子了呢?这个数目要达到96后面有117个零!如果真到那个时候,这些兔子恐怕地球都装不下了呢!

6.鸡兔同笼

你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代着名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?

你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?

解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。

这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。

7.春联中的数学

清乾隆五十年,朝廷为了表示国泰民安,曾邀集了全国有声望的老人逾千人,为他们举行了一次盛大寿宴。在宴会上,乾隆看到一位老寿星,鹤发童颜,神采奕奕,一问竟是与会者中的最长者,非常高兴,就以这位寿星的岁数为题,说出上联。座中一位博学多才的大臣纪晓岚即时对出了下联。

乾隆的上联是:花甲重开,又加三七岁月。

纪晓岚的下联:古稀双庆,更多一度春秋。

那这位寿星到底年岁几何呢?

上联中的“花甲”是指60岁,“花甲重开”就是两60,“三七岁月”是21岁,即602+21=141。

下联中的“古稀”指七十岁,“古稀双庆”就是两个70岁,“一度春秋”就是1年,即702+1=141。

8.米兰芬算灯

李汝珍,清代人,是个“学无所不窥”的才子,可能是学问钻研多了,所以官场上却甚不得意。他写了好几本书,《镜花缘》是流传最广的一本。此书中描写了一位精通算学的才女“矶花仙子”名叫米兰芬。

米兰芬和众姐妹在宗伯府聚会,来到小鳌山楼上观灯。楼上的灯形状有两种,一种灯是上面三个大球,下缀六个小球,一种灯是上面三个大球下面十八个小球。楼下的灯也有两种,一种是一个大球缀二个小球,一种是一大球缀四个小球。知道楼上有大灯球396个,小灯球1440个,楼下有大灯球360个,小灯球1200个。

才女们要米兰芬计算,楼上楼下的四种灯各有多少盏?

米兰芬说:“以楼下论,将小灯球数折半,得600,减去大灯球数360,即得缀四个小灯球的灯数为240,用360减240得120,即得缀二个小灯球的灯数为120。此用‘鸡兔同笼’之法。”用同样的方法算楼上灯数:“以1440折半,得720,720-396=324,324÷6=54。得缀十八个小灯球的灯数为54。用396-543=234,234÷3=78。即缀六个小灯球的灯数为78。”

这里说的“鸡兔同笼”法,是指的我国古代的一种类型题目,比如在一个笼中关有鸡与兔,数头有100个,数脚有240只。问鸡、兔各有多少?

对此题,有一个简单巧妙的算法,就是:如果让鸡都缩起一只脚,“金鸡独立”站着;让兔子全部抬起二只前腿,只用二只后腿站着,这时,再数脚数,就应是240除以2,得120只脚。

如笼中全是鸡,由于此时数鸡时,每只鸡都是一头一脚(另一脚缩起来了)。故100只鸡应只有100只脚,现在却有120只脚,多的20只脚是那儿来的呢?原来每只兔子都要多数1只脚,这就说明兔子数是20,而鸡数则是80。

现在你明白了米兰芬的算法了吧!比如说楼下的灯,一大球下缀二小球,就相当于“一只鸡有二只脚”,一大球下缀四小球就相当于“一只兔有四只脚”。所以,用“鸡兔同笼”之法就算清楚了。

至于楼上的灯,小球数折半,就相当于把灯改制成“每灯三个大球,下缀三个小球”和“每灯三个大球,下缀九个小球”这两种。如果都是前一种灯,则大小灯球数应相等。现小球数为720(=1440÷2),大球数396,多出324个小球。是因为每盏第二种灯小灯球多出6个的原因,从而用324÷6=54,即其中有54盏第二种灯,第二种灯共用大灯球162个,故第一种灯用大灯球234个,除以3得78,就是第一种灯数了。

朋友,如果换了你来解决这道题,你又会怎么做呢?

9.铺地锦

前面已经介绍了,米兰芬是《镜花缘》里的一个“才女”,精通数学,在书中有不少她解数学题的故事。

有一位才女要考考米兰芬:“有一套金杯,大小一共9只,共用126两黄金打造,这些杯子从小到大每只都比前一只重同样多,且第二只是第一只重量的2倍”,她问米兰芬,“你能算出杯重吗?”

米兰芬说:“这要用‘差分之法’。”并算出这9只杯子重量依次为2两8钱、5两6钱、8两4钱、11两2钱、14两、16两8钱、19两6钱,22两4钱和25两2钱。

这里“差分之法”实际上就是现在的等差数列的计算方法。由于从第二个杯子起,各个杯子的重量分别是最小杯的2、3、4、5、6、7、8、9倍,所以,这些杯子的重量是最小杯子的

1+2+3+4+5+6+7+8+9=9(9+1)÷2=45(倍)。

于是,最小的杯子重量为126÷45=2.8(两),以后再算出各个杯子的重量。

又有一位才女指着一张圆桌,问米兰芬:“你能算出它的周长吗?”

米兰芬说可以,她叫人拿尺量得圆桌直径为3尺2寸,然后画了一个“铺地锦”:

同类推荐
  • 调皮的萝卜(陪伴学生健康成长的大自然故事)

    调皮的萝卜(陪伴学生健康成长的大自然故事)

    植物都具有自己的秉性,有自己的特性,作者通过一个一个的故事将植物拟人化,小朋友们可以通过这些故事获得各种各样的知识,从而更了解植物的特性,增广见识,获得知识。该书寓教于乐,很有意义。
  • 著名科学家成才故事(中国名人成才故事)

    著名科学家成才故事(中国名人成才故事)

    本套书精选荟萃了中国历史上最具有代表性的也最具有影响力的名人,编辑成了这套《中国名人成才故事》(共10册),即《著名政治家成才故事》、《著名军事家成才故事》、《著名谋略家成才故事》、《著名思想家成才故事》、《著名文学家成才故事》、《著名艺术家成才故事》、《著名科学家成才故事》、《著名发明家成才故事》、《著名财富家成才故事》、《著名教育家成才故事》等,这些故事既有趣味性,又蕴含深刻的道理,能够带给我们深刻的启迪,是青少年课外不可缺少的精神食粮。
  • 真情实感的故事(中华成语故事全集)

    真情实感的故事(中华成语故事全集)

    成语是汉语词汇宝库里的璀璨明珠。它是长期以来人们在相沿习用的过程中,形成的形式简洁面意义精辟的固定短语。它结可严谨,表现性强,具有庄重典雅的书面语色彩,历来为人们喜闻乐用。不论讲话或作文,准确恰当地镶嵌或点缀一些成语。本书注重知识性、可读性和完整性,每个成语都辟有释义、出处、故事三大部分。编排顺序按笔画多少排列,既方便读者阅读,又方便读者查阅。本书既可作为中小学生学习成语的工具书,又适合不同层次读者作为故事阅读,具有广泛的适用性。
  • 新闻传播法规与职业道德教程

    新闻传播法规与职业道德教程

    与旧版相比,《新闻传播法规与职业道德教程》(第二版)具有明显优势:第一,强调实时性。紧跟我国新闻传播法制的发展步子,书中引用的法律条文或所依据的法律渊源都是最近发布的现行法律、法规,所用案例,除了小部分经典案例外,大都是新近发生的案例。第二,强调实践性。本书虽有新闻传播法律与伦理理论的介绍与解读,但重点是阐述新闻传播法律与伦理的实际状况、新闻传播法律与伦理的建设实践。第三,强调实用性。在结构上打破原教材原理、历史、业务三大块的体例,以阐释现行法律规范、伦理规范为重点,将历史部分移至新闻传播法规或新闻传播伦理部分的最后一章,录以备考。
  • 组织行为学

    组织行为学

    本书详细介绍了组织行为学的基本原理,同时辅以实战案例,系统、全面、深入地介绍了组织行为学的思想、理念和方法,分为四个部分共15章。
热门推荐
  • 小巨人

    小巨人

    他,身材矮小,相貌丑陋,智商底下,别人眼中嘲笑的对象他,工作狂人,追求极致,意志坚定,平凡人创造非凡事业人们说他会成为中国的乔布斯,他不过泯然一笑不论是国内三大互联网巨头,还是谷歌、苹果、Facebook这样的菊苣都对他加以青睐
  • 养肺食谱

    养肺食谱

    本书精选了近百种养肺食谱的做法,你能在短时间内享用色香味美的养肺菜肴。既有大众熟悉的传统菜式,也有名厨新近的创新品种,种类齐全,制作简单,操作方便,内容实用。
  • 医界布衣

    医界布衣

    考霸每年高考均获状元,目的不是为了能上好大学,而是为了奖学金,这次以状元身份被J大录取,进入京都,正当他的生活过得顺风顺水时,军方截获消息,国际恐怖分子将对他,进行绑票,为了这位少年的安全,不惜动用最具战斗力的特战队精英,原来绑票他竟然是为了……
  • 回归仙班

    回归仙班

    作为太上老君的接班人.却不慎把呈贡给王母娘娘的万年驻颜丹落入凡间.王母娘娘大怒将其贬入凡间,归黎此刻(内心一万只草泥马崩腾而过,师傅还有七天就退休了,我就能成功上位了啊!!!!!!)
  • 旧爱新欢:总裁大叔别乱来

    旧爱新欢:总裁大叔别乱来

    五年的时间说长不长,说短不短。长到邹沫再见到孟庭之时竟有种恍如隔世的错觉。短到她想尽办法都没能忘掉那段过去。他们都说孟庭之待她好,她也这么以为,好到她喜欢他入了骨,中了毒。可他们却又说,你看,你长的多像她。是啊,多像她。邹沫识趣的远离他的生活。可为什么,他还要来招惹她?--情节虚构,请勿模仿
  • 中国共产党党员主体地位与党内民主问题研究

    中国共产党党员主体地位与党内民主问题研究

    党员主体地位与党内民主在实践中是互动互促与辩证统一的。政党民主持久健康发展,既需要制度保障,也需要动力支撑。党员主体地位在党内民主发展中,属于主体性动力,有内在性,广泛性,根本性的动力特点。本书内容的重点,是在厘清中国共产党党员主体地位理论来源与实践进程的基础上,从制度建设与动力合成有机统一的视角,立足党员主体动力产生的来源、动力体现的重点、动力效能检验的关键,探寻推动党内民主制度改革完善的理论与实践问题。
  • 仙妖乱尘缘

    仙妖乱尘缘

    修千年,修不过情劫。斗鬼魅,斗不过命轮。六界之争,生生不息。****************终有一天我修出大成,手提长刀,昂然立与六界,威风凛凛,鬼怪皆服。放眼四周,却发现已然孤身。千年白莲,秦时寒月,文昌帝君,时光终将湮灭一切,爱恋痛苦最后消亡。唯有旧书札记之中,依稀可循,昔日四人行。已有完本作品《剑舞之一舞倾城》
  • 爱得多不如爱得对

    爱得多不如爱得对

    素质教育是教育的方向,也是现代教育中的一个难题。中国家教学会理事、青少年教育专家、 平行教育创始人崔宇用最家常的话告诉你什么是素质教育、为什么要重视素质教育,然后从家长、学生、教师、媒体这四个角度,与这四类人群中的代表对话,三言两语,解读孩子的教育问题。
  • 辣手王妃:皇上别惹我

    辣手王妃:皇上别惹我

    父亲谋反,为保九族,她宁屈承龙恩;今为保他天下,她愿弑父杀兄!他拍手叫绝:“为爱灭亲?演得真像!”他喂她毒药,囚禁羞辱,忍住泪水,她笑得猖狂!他掐住她的脖子,苦涩落泪:就算你是弃妃残花,也只能死在我身旁……
  • 叱咤风云的军事家(4)

    叱咤风云的军事家(4)

    本书精选荟萃了古今中外各行各业具有代表性的有关名人,其中有政治家、外交家、军事家、谋略家、思想家、文学家、艺术家、教育家、科学家、发明家、探险家、经济学家、企业家等,阅读这些名人的成长故事,能够领略他们的人生追求与思想力量,使我们受到启迪和教益,使我们能够很好地把握人生的关健时点,指导我们走好人生道路,取得事业发展。